If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-21x-54=0
a = 7; b = -21; c = -54;
Δ = b2-4ac
Δ = -212-4·7·(-54)
Δ = 1953
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1953}=\sqrt{9*217}=\sqrt{9}*\sqrt{217}=3\sqrt{217}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-3\sqrt{217}}{2*7}=\frac{21-3\sqrt{217}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+3\sqrt{217}}{2*7}=\frac{21+3\sqrt{217}}{14} $
| x=x=1 | | 4x+6-2x=3x-9 | | x^2+3x+4√(x^2+3x+6)=0 | | x^2+3x+4√(x^2+3x+6)*4=0 | | −6y−4=2 | | 1/3(6x-9)+2x=33 | | 21=7+r | | 5(2-x)=3+4x | | 10d+5=18d-6/2 | | 4-x/4=2 | | −7h+12=47 | | 3(w-2)=7w+6 | | -1/2+3/5w=-2/3 | | g-12/2=3g/2-3 | | 7,50+1,50a=25,50 | | 6(x-5)=6x+11 | | -3x+1=x+114-8 | | a−12=1 | | 20p−11p=9 | | 8d=2d-6 | | 3/5x=-16 | | -3/2x-2=12 | | 56x-14=-x-62 | | .25x+.39(84-x)=84 | | 117-v=195 | | 3x=3x=4 | | f-1-9=46 | | 2x=3x=3x=4 | | 7=-5r-3-5r | | -10p−-20p+-15=15 | | |3x+4|=|2x-9| | | 9a-16=3+8a |